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Cray MPT – Message Passing Toolkit 
• Cray’s MPI library (and SHMEM library) 

– Optimized MPICH-2 for Cray interconnects  

• Multiple interconnect devices 
– SMP – Shared memory communication on nodes  
– Portals – Efficient message passing between nodes 

• Multiple message protocols  
– Short messages: eager protocol 
–  Long messages: rendezvous protocol (default), eager protocol 

• Optimized collective communication algorithms 
• Automatic transitions between devices, protocols, and 

algorithms (configurable via environment variables) 
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Cray Collective Communications 
• Improved performance over standard MPICH2 
• Work for any communicator (not just MPI_COMM_WORLD) 
• User-adjustable thresholds for algorithm selection  
• Cray Optimized Collectives 

– MPI_Allgather (small messages) & MPI_Allgatherv 
– MPI_Alltoall (optimized exchange order)  
– MPI_Alltoallv / MPI_Alltoallw (windowing algorithm) 

• Cray Optimized SMP-aware Collectives: MPI_Allreduce, 
MPI_Barrier, MPI_Bcast, MPI_Reduce 

• Are enabled by default but can be selectively disabled via 
MPICH_COLL_OPT_OFF 
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SMP-aware Collectives – Allreduce Example 

July 2009 Slide 5  

Identify Node-Captain rank. 
 Perform a local on-node
 reduction to node-captain.  
NO network traffic. 

STEP 1 
Perform a local on-node
 bcast.  NO network traffic.  

STEP 3 
Perform an Allreduce with node
-captains only. This reduces the
 process count by a factor of 8 on
 XT5. 

STEP 2 
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Performance Comparison of MPI_Allreduce 
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Performance Comparison of MPI_Reduce 
Default vs MPICH_COLL_OPT_OFF=MPI_Reduce 
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Performance Comparison of MPI_Allgather 
Default vs MPICH_COLL_OPT_OFF=MPI_Allgather 
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Short Message Eager Protocol 
• Sender "pushes" message to receiver 

– Sender assumes receiver can handle message and blindly 
transmits 

• If matching receive is posted, receiver  
–  routes incoming data directly into specified receive buffer  
–  posts notification event to other event queue 

• If no matching receive is posted, receiver  
–  routes incoming data into unexpected message buffer 
–  posts two events to unexpected event queue  
–  copies data into specified receive buffer when matching 

receive is posted 

• Message size <= MPICH_MAX_SHORT_MSG_SIZE bytes 
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Long Message Rendezvous Protocol 

• Receiver "pulls" message from sender 
• Sender notifies receiver about waiting message via a 

small header packet 
• Receiver requests message from sender after matching 

receive is posted 
• Receiver routes incoming data directly into specified 

receive buffer 
• Message size > MPICH_MAX_SHORT_MSG_SIZE bytes 

11 OLCF Spring ‘11 



Long Message Eager Protocol 
• Sender assumes receiver will handle message 

appropriately or will request retransmission 
– Sender blindly transmits data to receiver  

• If matching receive is posted, receiver 
–  routes incoming data directly into specified receive buffer  
–  sends completion acknowledgement to sender 

• If no matching receive is posted, receiver  
–  creates a long protocol match entry  
–  requests retransmission when matching receive is posted  
–  routes incoming data directly into specified receive buffer 

• Enabled using MPICH_PTLS_EAGER_LONG 
• CAUTION: blocking sends and unexpected messages 
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Configuration 
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MPI Environment Variables 
• Many environment variables available to tune MPI 

performance 
– Well documented on the MPI man page – Read it! 
– Default settings generally focus on attaining the best performance 

for most codes – not necessarily your code! 

• The MPI environment can change between MPT versions  
– Read the MPI man page and Cray documentation! 

• MPICH_ENV_DISPLAY – set to display the MPI environment 
during MPI initialization 

• MPICH_VERSION_DISPLAY - set to display the version of 
Cray MPT during MPI initialization 
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Auto-Scaling MPI Environment Variables 
• Key MPI variables change their default values depending 

on job size (total number of ranks) 
–  MPICH_MAX_SHORT_MSG_SIZE – threshold for short message eager 

protocol  
–  MPICH_PTL_UNEX_EVENTS – number of entries in unexpected event 

queue  
–  MPICH_UNEX_BUFFER_SIZE – buffer space available for unexpected 

messages  
–  MPICH_PTL_OTHER_EVENTS – number of entries in other event queue 

(send-side and expected events) 

• Users can override defaults with environment variables  
• Fine-tuning these variables may help performance 
• MPI errors due to insufficiencies indicate which variables 

need to be increased 
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Auto-Scaling MPI Environment Variables 

• Default values for various MPI job sizes: 
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MPI Environment Variable Name 1,000 PEs 10,000 PEs 50,000 PEs 100,000 PEs 

MPICH_MAX_SHORT_MSG_SIZE 
(This size determines whether
 the message uses the Eager or
 Rendezvous protocol) 

128,000 B 20,480 4096 2048 

MPICH_UNEX_BUFFER_SIZE 
(The buffer allocated to hold the
 unexpected Eager data) 

60 MB 60 MB 150 MB 260 MB 

MPICH_PTL_UNEX_EVENTS 
(Portals generates two events for
 each unexpected message
 received) 

20,480 
events 

22,000 110,000 220,000 

MPICH_PTL_OTHER_EVENTS 
(Portals send-side and expected
 events) 

2048 
events 

2500 12,500 25,000 



MPT Environment Variables – Portals 

• MPICH_PTL_MATCH_OFF – set to disable registration of 
receive requests within portals 
– Allows MPI to perform message matching for the portals device  
– May be beneficial when an application exhausts internal portals 

resources or when running latency-sensitive applications 

• MPICH_PTL_SEND_CREDITS – enables flow control to 
prevent the Portals event queue from being overrun 
– Value of -1 should prevent queue overflow in any situation  
– Only be used as needed – flow control negatively impacts 

performance 
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MPT Environment Variables – Portals 

• MPICH_PTL_MEMD_LIMIT – maximum number of Portals 
Matching Entries (MEs) and Message Descriptors (MDs) 
– May need to increase if pre-posting more than 2048 MPI receives  
–  Increase if abort with PtlMEMDPost() failed: PTL_NO_SPACE 
– Default: 2048  Minimum: 2048    Maximum: 65534 
–  If you increase MPICH_PTL_MEMD_LIMIT, also increase 

MPICH_PTL_OTHER_EVENTS to the same limit 
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Environment Variables 
MPICH_SMP_OFF 
• If set, disable the on-node SMP device and use the 

Portals device for all MPI message transfers 
• Use in a rare cases where code benefits from using 

Portals matching instead of MPI matching.  
• Default: Not enabled. 
• Useful for debugging reproducibility issues. 
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Environment Variables 
MPICH_FAST_MEMCPY 
• If set, enables an optimized memcpy routine in MPI. The 

optimized routine is used for local memory copies in the 
point-to-point and collective MPI operations.  
–  This can help performance of some collectives that send large 

(256K and greater) messages. 
• Collectives are almost always faster 
• Speedup varies by message size 
• Example: If message sizes are known to be greater than 1 megabyte, then 

an optimized memcpy can be used that works well for larges sizes, but may 
not work well for smaller sizes.  

– Default is not enabled (because there are a few cases that 
experience performance degradation) 

– Ex: PHASTA at 2048 processes:  reduction from 262 s to 195 s 
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Environment Variables 
MPICH_COLL_SYNC 
• If set, a Barrier is performed at the beginning of each 

specified MPI collective function. This forces all processes 
participating in that collective to sync up before the 
collective can begin. 
–  To enable this feature for all MPI collectives, set the value to 1.  Default is off. 

• Can be enabled for a selected list of MPI collectives 
• There are rare examples where this helps 

–  If the code has lots of collectives and MPI profiling shows 
imbalance (lots of sync time), this may help 

– Ex: PHASTA (CFD-turbulent flows) many MPI_Allreduce calls 
• At 2048 processes :  reduction from 262 sec to 218 sec. 

– Ex: But slowed down NekTarG (CFD-Blood Flow) by about 7% 
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Input/Output  
• Sometimes I/O causes scalability issues 

–  For example, cleaning up some writes improved weak scaling 
of the CFD code NektarG from 70% to 95% at 1K to 8K cores 

• Set file striping appropriately 
–  The default stripe count will almost always be suboptimal 
–  The default stripe size is usually fine. 
– Once a file is written, the striping information is set 

• Stripe input directories before staging data 
• Stripe output directories before writing data 

– Stripe for your I/O pattern 
• Many-many – narrow stripes  Many-one – wide stripes 

• Reduce output to stdout 
– Remove debugging reports (e.g. “Hello from rank n of N”) 
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Environment Variables 
MPICH_MPIIO_HINTS 
•  If set, overrides the default value of 

one or more MPI-IO hints. This also 
overrides any value set in the 
application code with calls to the 
MPI_Info_set routine.  

• Hints are applied to the file when it 
is opened with an MPI_File_open() 
call.   

•   MPICH_MPIIO_HINTS_DISPLAY 
–  If set, causes rank 0 in the participating 

communicator to display the names and 
values of all MPI-IO hints that are set for 
the file being opened with the 
MPI_File_open call. 

Default settings: 
PE 0:   MPIIO hints for 

c2F.TILT3d.hdf5:


    cb_buffer_size       = 16777216


    romio_cb_read        = automatic


    romio_cb_write       = automatic


    cb_nodes             = #nodes/8


    romio_no_indep_rw    = false


    ind_rd_buffer_size   = 4194304


    ind_wr_buffer_size   = 524288


    romio_ds_read        = automatic


    romio_ds_write       = automatic


    direct_io            = false


    cb_config_list       = *:1
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Environment Variables 
MPICH_MPIIO_HINTS (cont.) 
Examples: 
•  Syntax 

–  export MPICH_MPIIO_HINTS=data.hdf5:direct_io=true


•  For FlashIO at 5000 processes writing out 500MB per MPI thread, the following 
improved performance: 
romio_cb_write = "ENABLE" 
romio_cb_read = "ENABLE” 
cb_buffer_size = 32M 


–  When enаbled, аll collective reаds/writes will use collective buffering. When disаbled, аll collective reаds/writes 
will be serviced with individuаl operаtions by eаch process. When set to аutomаtic, ROMIO will use heuristics 
to determine when to enаble the optimizаtion. 

•  For S3D at 10K cores: 
romio_ds_write = ‘disable' - specifies if data sieving is to be done on read.  
Dаtа sieving is а technique for efficiently аccessing noncontiguous regions of dаtа 
romio_no_indep_rw = 'true' - specifies whether deferred open is used.   

–  Romio docs say that this indicates no independent reаd or write operаtions will be performed. This cаn be used 
to limit the number of processes thаt open the file. 
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MPI-IO Improvements 

  MPI-IO collective buffering 


   MPICH_MPIIO_CB_ALIGN=0 

   Divides the I/O workload equally among all aggregators 

   Inefficient if multiple aggregators reference the same physical I/O block 

   Default setting in MPT 3.2 and prior versions 


   MPICH_MPIIO_CB_ALIGN=1 

   Divides the I/O workload up among the aggregators based on physical I/O

 boundaries and the size of the I/O request 

   Allows only one aggregator access to any stripe on a single I/O call 

   Available in MPT 3.1 


   MPICH_MPIIO_CB_ALIGN=2 

   Divides the I/O workload into Lustre stripe-sized groups and assigns them

 to aggregators 

   Persistent across multiple I/O calls, so each aggregator always accesses

 the same set of stripes and no other aggregator accesses those stripes 

   Minimizes Lustre file system lock contention 

   Default setting in MPT 3.3 
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Rank Placement 

•  In some cases, changing how the processes are laid out on the 
machine may affect performance by relieving synchronization/
imbalance time. 

•  The default is currently SMP-style placement. This means that for a 
multi-node core, sequential MPI ranks are placed on the same node.  
–  In general, MPI codes perform better using SMP placement - Nearest neighbor  
–  Collectives have been optimized to be SMP aware 

•  For example, a 12-process job launched on a XT5 node with 2 hex-
core processors would be placed as:  

PROCESSOR           0            1  
RANK              0,1,2,3,4,5   6,7,8,9,10,11 
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Rank Placement 

•  The default ordering can be changed using the following 
environment variable: 

MPICH_RANK_REORDER_METHOD 

•  These are the different values that you can set it to: 
0:  Round-robin placement – Sequential ranks are placed on the next node in 

the list.  Placement starts over with the first node upon reaching the end of the list.  
1:  SMP-style placement – Sequential ranks fill up each node before moving 

to the next. 
2: Folded rank placement – Similar to round-robin placement except that each pass 

 over the node list is in the opposite direction of the previous pass. 
3: Custom ordering. The ordering is specified in a file named MPICH_RANK_ORDER. 

• When is this useful? 
–  Point-to-point communication consumes a significant fraction of program time and a 

load imbalance detected 
–  Also shown to help for collectives (alltoall) on subcommunicators  (GYRO) 
–  Spread out IO across nodes (POP) 
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Rank Order and CrayPAT 

• One can also use the CrayPat performance measurement 
tools to generate a suggested custom ordering.  
– Available if MPI functions traced (-g mpi or –O apa) 
–  pat_build –O apa my_program   

• see Examples section of pat_build man page 

• pat_report options: 
– mpi_sm_rank_order 

• Uses message data from tracing MPI to generate suggested MPI rank order. 
Requires the program to be instrumented using the pat_build -g mpi option. 

– mpi_rank_order 
• Uses time in user functions, or alternatively, any other metric specified by 

using the -s mro_metric options, to generate suggested MPI rank order. 
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Reordering Workflow 

• module load xt-craypat 
• Rebuild your code 
•  pat_build –O apa a.out 
• Run a.out+pat 
•  pat_report –Ompi_sm_rank_order a.out+pat+…sdt/ > pat.report 
• Creates MPICH_RANK_REORDER_METHOD.x file 
•  Then set env var MPICH_RANK_REORDER_METHOD=3     AND 
•  Link the file MPICH_RANK_ORDER.x to MPICH_RANK_ORDER 
• Rerun code 
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CrayPAT example 
Table 1:  Suggested MPI Rank Order


 Eight cores per node:  USER Samp per node


 Rank        Max    Max/        Avg    Avg/  Max Node


Order  USER Samp     SMP  USER Samp     SMP  Ranks


    d      17062   97.6%      16907  100.0%  832,328,820,797,113,478,898,600


    2      17213   98.4%      16907  100.0%  53,202,309,458,565,714,821,970


    0      17282   98.8%      16907  100.0%  53,181,309,437,565,693,821,949


    1      17489  100.0%      16907  100.0%  0,1,2,3,4,5,6,7


30 

• This suggests that 
1.  the custom ordering “d” might be the best 
2.  Folded-rank next best 
3.  Round-robin 3rd best 
4.  Default ordering last 
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Reordering example 
GYRO   
• GYRO 8.0  

–  B3-GTC problem with 1024 processes 

• Run with alternate MPI orderings 
–  Custom: profiled with with –O apa and used reordering file 

MPICH_RANK_REORDER.d 

31 

Reorder method Comm. time 
Default 11.26s 

0 – round-robin 6.94s 
2 – folded-rank 6.68s 

d-custom from apa 8.03s 

CrayPAT 
suggestion 
almost right! 
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Reordering example 
TGYRO   
• TGYRO 1.0  

– Steady state turbulent transport code using GYRO, NEO, TGLF 
components 

• ASTRA test case 
–  Tested MPI orderings at large scale 
– Originally testing weak-scaling, but found reordering very useful 

32 

Reorder 
method 

TGYRO wall time (min) 
20480 40960 81920 

Default 99m 104m 105m 
Round-robin 66m 63m 72m 

Huge win! 

OLCF Spring ‘11 



Tips & Recommendations 

33 OLCF Spring ‘11 



Cray MPT – General Tips 
• Always use the compiler wrappers to compile! 

– Always specify the compiler wrappers when running configure! 

• Use a recent version of MPT (current 5.2.0) 
– Significant improvements (e.g. allgatherv in 4.0.0 and later) 

• Update environment variables for new versions of MPT  
– Updated algorithms might have different requirements 
– Current versions attempt to set the right buffer sizes at launch 

based on job size rather than using static settings  
– Suggestion: if you use env vars based on previous versions, try 

using recent verisons w/o env vars 

• Status:   Kraken: default 5.0.0     JaguarPF: default 4.0.0 
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Cray MPT – Messaging Tips 
• Performs best when every message is expected prior to 

receipt, but ensuring such can be difficult or impossible 
• Special handling of unexpected messages for both MPI 

and Portals to maximize performance and scalability  
• Excessively bad application behavior can exhaust 

available resources for handling unexpected messages 
and events, resulting in application termination. 
– Short term fix:  allocate additional resources via environment 

variables 
–  Long term fix:  modify application to improve communication 

behavior 
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Portals Errors 
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Error Description / Cause Suggested Fix 
PTL_PT_NO_ENTRY Memory mapping error / 

improper stack initialization 
Request refund and resubmit 
job 

PTL_NAL_FAILED Network layer error / node 
or network failure 

Request refund and resubmit 
job 

PTL_EQ_DROPPED Event dropped from 
queue / insufficient space 
in queue 

Increase resources with 
environment variables, change 
application communication 
profile 

PTL_SEGV  Invalid user address 
supplied to portals 

Fix invalid pointers in 
application code 

PTL_PT_VAL_FAILED   Invalid address / invalid 
buffer parameter in MPI 

Fix invalid pointers in 
application code (MPI)  

PTL_NO_SPACE  Insufficient memory for 
internal buffers 

Reduce app. memory, increase 
MPICH_PTL_MEMD_LIMIT, 
set MPICH_PTL_MATCH_OFF 



1.  Fix any load imbalance – consider decomposition and rank order 
2.  Fix your hotspots 

1.  Communication 
•  Pre-post receives 
•  Overlap computation and communication 
•  Reduce collectives 
•  Adjust MPI environment variables 
•  Use rank reordering 

2.  Computation 
•  Examine the hardware counters and compiler feedback 
•  Adjust the compiler flags, directives, or code structure to improve

 performance 
3.  I/O 

•  Stripe files/directories appropriately 
•  Use methods that scale 

•  MPI-IO or Subsetting 
At each step, check your answers and performance. 
Between each step, gather your data again. 

Step by Step 
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MPI Programming Techniques 
Pre-posting receives 
• If possible, pre-post receives before the matching sends 

– Optimization technique for all MPICH installations (not just MPT) 
– Not sufficient to simply put receive immediately before send 
– Put significant amount of computation between receive-send pair 

• Do not go crazy pre-posting receives.  You can (and will) 
overrun the resources available to Portals. 

• Code example 
–  Halo update – with four buffers (n,s,e,w), post all receive requests as early as 

possible. Makes a big difference on CNL (not as important on Catamount).  
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MPI Programming Techniques 
Example: 9-pt stencil pseudo-code 
Basic 

9-pt computation


Update ghost cell 
boundaries

East/West IRECV, 
ISEND, WAITALL


North/South IRECV, 
ISEND, WAITALL


Maximal Irecv preposting 
Prepost all IRECV


9-pt computation


Update ghost cell 
boundaries

East/West ISEND, 
Wait on E/W IRECV 
only


North/South ISEND, 
Wait on the rest


  *Makes use of temporary buffers

39 OLCF Spring ‘11 



MPI Programming Techniques 
Overlapping communication with computation 
•  Use non-blocking send/recvs to overlap communication 

with computation whenever possible 
–  Typical pattern: 

1.   Pre-post non-blocking receive 
2.   Compute a “reasonable” amount to ensure effective pre-

posting 
3.   Post non-blocking send 
4.   Compute as much as possible to maximize overlap of comm. 

and comp. 
5.   Wait on communication to finish only when absolutely 

necessary 
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MPI Programming Techniques 
Overlapping communication with computation 
•  In some cases, it may be better to replace collective 

operations with point-to-point communications to overlap 
communication with computation 
–  Caution:  Do not blindly reprogram every collective by hand 
–  Concentrate on the parts of your algorithm with significant 

amounts of computation that can overlap with the point-to-point 
communications when a [blocking] collective is replaced 
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MPI Programming Techniques 
Reduce Collective Communications   
• Avoid using collective communications whenever possible 

– MPI collectives are blocking, leading to large sync times 
– Collective communication can cripple scalability 

• Use algorithms that only require local info when possible 
– Consider duplicating computation to reduce communication 

• When an algorithm must communicate “globally”: 
– Use MPT collectives that have been optimized by Cray 
– Minimize the scope of the collective operation 
– Minimize the number of collectives through aggregation 
– Consider implementing a non-blocking collective only if justified 

after careful analysis 
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MPI Programming Techniques 
Aggregating data 
•  For very small buffers, aggregate data into fewer MPI calls 

(especially for collectives) 
–  1 all-to-all with an array of 3 reals is clearly better than 3 all-to-alls with 1 real 
–  Do not aggregate too much. The MPI protocol switches from a short (eager) 

protocol to a long message protocol using a receiver pull method once the 
message is larger than the eager limit. This limit is by default 128000 bytes, but 
it can be changed with the MPICH_MAX_SHORT_MSG_SIZE environment 
variable. The optimal size for messages most of the time is less than the eager 
limit. 

•  Example – DNS 
–  Turbulence code (DNS) replaced 3 AllGatherv’s by one with a larger message 

resulting in 25% less runtime for one routine  
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MPI Programming Techniques 
Aggregating data: Example from CFD 

***Original***  

for (index = 0; index < No; index++){ 
   double tmp; 
   tmp = 0.0; 
   out_area[index] = Bndry_Area_out(A, 
labels[index]); 
   gdsum(&outlet_area[index],1,&tmp); 
}  
for (index = 0; index < Ni; index++){ 
  double tmp; 
  tmp = 0.0; 
  in_area[index] = Bndry_Area_in(A, 
labels[index]); 
  gdsum(&inlet_area[index],1,&tmp);  
} 


void gdsum (double *x, int n, double *work) 
{ 
  register int i; 
  MPI_Allreduce (x, work, n, MPI_DOUBLE, 
MPI_SUM, MPI_COMM_WORLD); 
  /* *x = *work; */ 
  dcopy(n,work,1,x,1); 
  return; 
} 


***Improved***  

   for (index = 0; index < No; index++){ 
      out_area[index] = Bndry_Area_out(A, 
labels[index]); 
   }


   /* Get gdsum out of for loop */ 
   tmp = new double[No]; 
   gdsum (outlet_area, No, tmp);  
   delete tmp; 

   for (index = 0; index < Nin; index++){ 
     in_area[index] = Bndry_Area_in(A, 
labels[index]); 
   }


   /*  Get gdsum out of for loop */ 
   tmp = new double[Ni]; 
   gdsum(inlet_area, Ni, tmp);  
   delete tmp; 
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Hybridization 
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OpenMP  
• When does it pay to add/use OpenMP in my MPI code? 

– Add/use OpenMP when code is network bound 
– As collective and/or point-to-point time increasingly becomes a 

problem, use threading to keep number of MPI processes per 
node to a minimum 

– Be careful adding OpenMP to memory bound codes – can hurt 
performance 

– Be careful to match memory affinity to thread affinity 
• Pre-touch memory from correct thread after allocation 

–  It is code/situation dependent! 
– Consider one MPI process on each CPU and one OpenMP thread 

per available core within each process 
• Often gives results almost as good as a fully optimized one-process-per-

node code (with OpenMP threads across all of the cores on the node) with 
significantly less development overhead 
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OpenMP 
aprun depth 
• Must get “aprun –d” correct 

–  -d (depth) Specifies the number of threads (cores) for each 
process.  ALPS allocates the number of cores equal to depth 
times processes.  

–  The default depth is 1. This option is used in conjunction with 
the OMP_NUM_THREADS environment variable. 

– Also used to get more memory per process 
• Get 1 or 2 GB limit by default (machine dependent) 

– Many have gotten this wrong, so it is important to understand 
how to use it properly! 
•  If you do not do it correctly, a hybrid OpenMP/MPI code can get multiple 

threads spawned on the same core which can be disastrous.  
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OpenMP 
aprun depth (cont.) 
       % setenv OMP_NUM_THREADS 4 

      % aprun -n 4 -q ./omp1 | sort 
       Hello from rank 0, thread 0, on nid00291. (core affinity = 0) 
       Hello from rank 0, thread 1, on nid00291. (core affinity = 0) 
       Hello from rank 0, thread 2, on nid00291. (core affinity = 0) 
       Hello from rank 0, thread 3, on nid00291. (core affinity = 0) 
       Hello from rank 1, thread 0, on nid00291. (core affinity = 1) 
       Hello from rank 1, thread 1, on nid00291. (core affinity = 1) 
       Hello from rank 1, thread 2, on nid00291. (core affinity = 1) 
       Hello from rank 1, thread 3, on nid00291. (core affinity = 1) 
       Hello from rank 2, thread 0, on nid00291. (core affinity = 2) 
       Hello from rank 2, thread 1, on nid00291. (core affinity = 2) 
       Hello from rank 2, thread 2, on nid00291. (core affinity = 2) 
       Hello from rank 2, thread 3, on nid00291. (core affinity = 2) 
       Hello from rank 3, thread 0, on nid00291. (core affinity = 3) 
       Hello from rank 3, thread 1, on nid00291. (core affinity = 3) 
       Hello from rank 3, thread 2, on nid00291. (core affinity = 3) 
       Hello from rank 3, thread 3, on nid00291. (core affinity = 3) 

      % setenv OMP_NUM_THREADS 4 

     % aprun -n 4 -d 4 -q ./omp | sort 
       Hello from rank 0, thread 0, on nid00291. (core affinity = 0) 
       Hello from rank 0, thread 1, on nid00291. (core affinity = 1) 
       Hello from rank 0, thread 2, on nid00291. (core affinity = 2) 
       Hello from rank 0, thread 3, on nid00291. (core affinity = 3) 
       Hello from rank 1, thread 0, on nid00291. (core affinity = 4) 
       Hello from rank 1, thread 1, on nid00291. (core affinity = 5) 
       Hello from rank 1, thread 2, on nid00291. (core affinity = 6) 
       Hello from rank 1, thread 3, on nid00291. (core affinity = 7) 
       Hello from rank 2, thread 0, on nid00292. (core affinity = 0) 
       Hello from rank 2, thread 1, on nid00292. (core affinity = 1) 
       Hello from rank 2, thread 2, on nid00292. (core affinity = 2) 
       Hello from rank 2, thread 3, on nid00292. (core affinity = 3) 
       Hello from rank 3, thread 0, on nid00292. (core affinity = 4) 
       Hello from rank 3, thread 1, on nid00292. (core affinity = 5) 
       Hello from rank 3, thread 2, on nid00292. (core affinity = 6) 
       Hello from rank 3, thread 3, on nid00292. (core affinity = 7) 
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All on core 0 
One thread 
per core as 
desired!!! 
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OpenMP – Scope all variables! 

  int i, j, k; 

  #pragma omp parallel shared(t, new, old, 
nrl, dt, NR, NC, NITER) private(d) 

   #pragma omp for schedule(runtime) nowait 

      for (i = 2; i <= nrl-1; i++) 

        for (j = 1; j <= NC; j++){ 

          t[*new][i][j] = 0.25 * 

          (t[old][i+1][j] + t[old][i-1][j] + 

          t[old][i][j+1] + t[old][i][j-1]); 

          d = MAX(fabs(t[*new][i][j] –  

                  t[old][i][j]), d); 

  int i, j, k; 

#pragma omp parallel shared(t, new, old, nrl, 
dt, NR, NC, NITER) private(d,i,j) 

   #pragma omp for schedule(runtime) nowait 

      for (i = 2; i <= nrl-1; i++) 

        for (j = 1; j <= NC; j++){ 

          t[*new][i][j] = 0.25 * 

          (t[old][i+1][j] + t[old][i-1][j] + 

          t[old][i][j+1] + t[old][i][j-1]); 

          d = MAX(fabs(t[*new][i][j] –  

                  t[old][i][j]), d); 
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In this particular case, the homb benchmark got wrong answers and 
failed to scale well when using PGI and Pathscale. 



Closing Remarks 
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Last words 
• MPT provides optimized, high-performance communication 

–  Sometimes requires guidance and tuning – also patience and perseverance 

• Environment variables are an easy way to improve performance  
–  Familiarize yourself with ‘man mpi’ and remain up-to-date 

•  The is no replacement for good MPI programming practices 
–  Pre-posting receives, overlap computation and communication, reduce 

collective communications, aggregate data for communication 

• Rank reordering can significantly improve performance 
• Use depth option to aprun with OpenMP 
• Remember your parallel I/O – it can be crippling 
• Some of this may not show a benefit at <1K processes, but it can 

reap huge gains at 10K to 100K processes 
•  Thanks to Jeff Larkin of Cray for permission to use his slides 
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